### Safety

#### **RNG Upgrading and Anaerobic Digestion**



Webinar Series #2

Mark Hill November 2, 2020 With over a decade of experience in Renewable Natural Gas (RNG), we are ready to help you achieve success



### **Operations** Consulting

- · Process design review and optimization
- Digester optimization and gas production estimates
- Plant optimization recommendations
- Financial review of plant costs with recommendations
- Technology review and recommendation
- Metering layout and review in relation to CARB/EPA verification



#### Acquisition and Greenfield Due Diligence

- Technology review
- Maintenance schedule with OPEX and downtime estimates
- Production estimates, including gas curves, downtime, and parasitic loss
- Financial modeling of Project
- Metering setup review and CI score optimization

1

Employee skill set interviews



### Disclaimer



This presentation is meant for discussion purposes. Novilla RNG is not responsible for any errors or omissions, or for the results obtained from the use of this information. All information in this presentation is provided "as is", with no guarantee of completeness, accuracy, timeliness or of the results obtained from the use of this information. Novilla RNG recommends you consult with your safety specialist for unique requirements for your specific project.

### Agenda



Safety Motivation

Hydrogen Sulfide and Methane Safety

Safety in Plant Design

Personal Protective Equipment (PPE)

**Building the Safety Culture** 

#### Anaerobic digestion and RNG production of a history of fatalities and major incidents that are not being widely discussed





2015: Worker killed from hydrogen sulfide (H2S) poisoning as he was trying to remove the roof of a digester. First responders and other workers also suffered poisoning while trying to rescue him. Worker not equipped with PPE and unaware of hydrogen sulfide dangers.



2017: 2 workers seriously injured (burns) when a pressurized tank containing anaerobic gas exploded as they were working on equipment



2019: A gas company worker suffered serious head injuries after being struck in head by a failed highpressure hose from a CNG trailer. The coupling came loose from the trailer and did not have an anti-whip cable



2014: Workers started an exhaust fan to inflate a digester after it had been emptied. They heard a loud noise followed by the digester roof bursting into flames

# While OSHA does not specifically track fatalities for AD/RNG, the fields supporting RNG have 7x fatalities as the US Average



| Field                | Fatalities per 100,000<br>full time workers |
|----------------------|---------------------------------------------|
| Truck Transportation | 28.3                                        |
| Waste Remediation    | 21.3                                        |
| Farming              | 20.1                                        |
| Oil and Gas          | 14.7                                        |
| US Average           | 3.5                                         |

Poisonous and explosive gases, high voltage electrical risk, working at heights, and a young, inexperienced industry create and environment ripe for injuries if safety is given a backseat to production

Source: 2018 OSHA fatality rates

### Agenda



Safety Motivation

Hydrogen Sulfide and Methane Safety

Safety in Plant Design

**Personal Protective Equipment (PPE)** 

**Building the Safety Culture** 

# Hydrogen sulfide poisoning is one of the largest risks in operating anaerobic digesters



| Concentration<br>(ppm) | Symptoms/Effects                                                                                                                                                                                                                                                            |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0.00011-<br>0.00033    | Typical background concentrations                                                                                                                                                                                                                                           |  |
| 0.01-1.5               | Odor threshold (when rotten egg smell is first noticeable to<br>some). Odor becomes more offensive at 3-5 ppm. Above 3<br>ppm, odor described as sweet or sickeningly sweet.                                                                                                |  |
| 2-5                    | Prolonged exposure may cause nausea, tearing of the eyes<br>headaches or loss of sleep. Airway problems (bronchial<br>constriction) in some asthma patients.                                                                                                                |  |
| 20                     | Possible fatigue, loss of appetite, headache, irritability, poo<br>memory, dizziness.                                                                                                                                                                                       |  |
| 50-100                 | Slight conjunctivitis ("gas eye") and respiratory tract irritation after 1 hour. May cause digestive upset and loss of appetite                                                                                                                                             |  |
| 100                    | Coughing, eye irritation, loss of smell after 2-15 minutes<br>(olfactory fatigue). Altered breathing, drowsiness after 15-30<br>minutes. Throat irritation after 1 hour. Gradual increase in<br>severity of symptoms over several hours. Death may occur<br>after 48 hours. |  |
| 100-150                | Loss of smell (olfactory fatigue or paralysis).                                                                                                                                                                                                                             |  |
| 200-300                | Marked conjunctivitis and respiratory tract irritation after 1 hour. Pulmonary edema may occur from prolonged exposure.                                                                                                                                                     |  |
| 500-700                | Staggering, collapse in 5 minutes. Serious damage to the eyes in 30 minutes. Death after 30-60 minutes.                                                                                                                                                                     |  |
| 700-1000               | Rapid unconsciousness, "knockdown" or immediate<br>collapse within 1 to 2 breaths, breathing stops, death with<br>minutes.                                                                                                                                                  |  |
| 1000-2000              | Nearly instant death                                                                                                                                                                                                                                                        |  |



Novilla RNG has observed steady state hydrogen sulfide levels in the 2,000 to 6,000 PPM range, with levels spiking as high as 20,000 PPM (2%) in newly filled digesters

## Digesters and RNG plants have multiple locations where hydrogen sulfide has been shown to leak





Pressure Relief Valves



Manure Sumps



Fittings/Line Breaks



Short flares that fail to light



**Electrical Conduits** 



Condensate Lines and sumps

Confined space entry and vessel cleanouts require a well executed plan to mitigate hydrogen sulfide risk







Digester cleanouts require confined space permit entry teams, air sampling, and caution when removing manure as pockets of hydrogen sulfide can still be released



Vessels are considered confined spaces and the plane of the vessel should not have a body part cross it without a confined space entry permit

While oxygen injection into digesters has been used as an inexpensive way of lowering hydrogen sulfide levels, it has its own risks





Biogas "Fire Triangle"

- Any oxygen injection needs to be well thought and controlled or there is a risk of explosion
- Only properly rated electrical equipment should be used around digesters and Class I/Div II areas. Areas should be marked and understood
- Vessel cleanouts or methane leaks can result in the right Air/Methane/CO2 risk for explosions

# Proper training, PPE, and a safety culture are critical in preventing hydrogen sulfide and methane incidents



Have multiple employees trained and medically cleared to use an SCBA and confined space entry

Ensure you have the right fit-tested masks and gear onsite with filled canisters

Employees should be clean shaven



Wear a calibrated and bump tested 4-gas monitor. Know what your emergency escape routes are if it goes off.



Train and drill your employees on the dangers of hydrogen sulfide and have a rehearsed rescue plan



Know how to properly sample for hydrogen sulfide



### Agenda



Safety Motivation

Hydrogen Sulfide and Methane Safety

Safety in Plant Design

Personal Protective Equipment (PPE)

**Building the Safety Culture** 

#### Per the previous section, hydrogen sulfide and methane safety should be at the forefront of plant design





Flame Detector



Hydrogen Sulfide (low) or Methane Detector (high)



E-stops located at exits of building with lights indicating what shutdown the facility for first responders

Place E-stops in locations the farmer and first responders can access, test shutdown procedures, and rehearse with local fire department





Emergency stops should be located at the fence line or sufficiently far away from plant

Make sure to mark locations with a sign for first responders

Should shutdown all gas flow to the plant – have fail safe closed valves to prevent gas from entering plant

During commissioning, make sure that the automated responses of the plant do what you expect.

## Place pressure relief valves high enough where a downdraft does not endanger people





Previous pressure relief valves on catwalk were replaced with ones extending 14 feet up



Avoid "Candy Cane" pressure relief vents that can direct poisonous gases downward

## Place equipment in locations that are easily accessible for your operators



Placing flow meters in hard-to-reach locations will encourage employees to take risks in servicing the meter. Engineers should design the piping with fall protection in mind



On flares, place ignition system and meters near ground level so operators do not have to get on a manlift and expose themselves to gases



Place platforms around media vessels for easy and safe changeouts



# Virtual pipeline trailers present a unique risk of high pressures, explosive gas, and cold injury (while unloading)



Ensure anti-whip cables are in place and operators are trained in connection/disconnection of the hoses Make sure the anti-whip cables are short enough to prevent whip-back to operator's face. During unloading, gas temperatures can reach extreme cold



E-stops at each unloading lane, fire eyes looking for flame, grounding cable interlock for unloading, bollards, and pull through lanes. Breakaway hoses in case hose is left on trailer



#### Before commissioning a plant, make sure to perform a Process Hazard Analysis (PHA) as part of the Process Safety Management (PSM)



If you are running a virtual pipeline you will likely have more than 5,000lbs of methane stored on site and be considered a PSM site. PSM sites are required to have Process Hazard Analysis done.

Regardless of whether you have to do a PHA, it is worth doing for the following reasons

- It brings multiple disciplines together to walk through plant operations and what could go wrong
- For each potential failure point, a "what if" analysis is done to expose potential ramifications. If the ramification ranks high enough, corrective action needs to be taken.
- Requires coordination and rehearsals with first responders. Typically the first responders will be rural volunteer fire fighters who aren't used to industrial sites or hydrogen sulfide. By having walk-throughs of the site prior to commissioning, the first responders will understand how to shutdown them down and you will build good local relations

### Agenda



Safety Motivation

Hydrogen Sulfide and Methane Safety

Safety in Plant Design

Personal Protective Equipment (PPE)

**Building the Safety Culture** 

#### Gas Monitors are essential PPE at an RNG site or farm







H2S Only, 2-year life, easy to use

Good for visitors to site

Better



4 Gas monitor

Good for non-solitary workers

Best



4 Gas monitor with lone worker call-out

Employees who may be isolated

Beyond the standard safety boots, eye-protection, ear-protection, and gloves, every RNG site should have the following:



NOVILLA RNG

### Agenda



Safety Motivation

Hydrogen Sulfide and Methane Safety

Safety in Plant Design

Personal Protective Equipment (PPE)

**Building the Safety Culture** 

## Before every task, a job hazard analysis should be completed

- Identify what tasks will be performed
- Identify the hazards
- Assess the hazards
- Find ways to mitigate the hazards
- Determine how much risk is left after mitigation
- Who is responsible for the controls and how will they be implemented?

| A. Mission or Task:<br>Conduct a deliberate attack |                                       | B. Date/Time Group<br>Begin: 010035R May XX<br>End: 010600R May XX |                                            | C. Date Prepared:<br>28 April XX |                                                                           |
|----------------------------------------------------|---------------------------------------|--------------------------------------------------------------------|--------------------------------------------|----------------------------------|---------------------------------------------------------------------------|
| D. Prepare                                         | d By: (Rank, Last                     | Name, Duty Po                                                      | osition) CPT Smith,                        | Cdr                              |                                                                           |
| E. Task                                            | F. Identify<br>Hazard                 | G. Assess<br>Hazard                                                | H. Develop Controls                        | I. Determine<br>Residual Risk    | J. Implement<br>Controls (How To)                                         |
| Conduct<br>obstacle<br>breaching<br>operations     | Obstacles                             | High (H)                                                           | Develop and use obstacle<br>reduction plan | Low (L)                          | Unit TSOP, OPORD,<br>training handbook                                    |
|                                                    | Inexperienced soldiers                | High (H)                                                           | Additional training and<br>supervision     | Moderate (M)                     | Rehearsals, additional training                                           |
|                                                    | Operating under<br>limited visibility | Moderate (M)                                                       | Use NVDs, use IR<br>markers on vehicles    | Low (L)                          | Unit TSOP, OPORD                                                          |
|                                                    | Steep cliffs                          | High (H)                                                           | Rehearse using climbing<br>ropes           | Moderate (M)                     | FM 3-97.6, Mountain<br>Operations; FM 3-97.61,<br>Military Mountaineering |
|                                                    | Insufficient<br>planning time         | High (H)                                                           | Plan and prepare<br>concurrently           | Moderate (M)                     | OPORD, troop-leading<br>procedures                                        |
| K. Determi                                         | ne overall missio                     | n/task risk leve                                                   | l/after controls are implem                | nented (circle one               | )                                                                         |
| L                                                  | <sup>ow (L)</sup>                     | MODERATE (M                                                        | HIGH (H)                                   | EXTREME                          | ELY HIGH (E)                                                              |

The US Military has seen an 70%+ reduction in training injuries by using the risk assessment matrix (Job Hazard Analysis in the civilian world). Every frontline leader must fill it out prior to a mission or training exercise and brief their soldiers



#### Building a safety culture doesn't start at the top, it starts at the bottom

**Employee Safety Initiatives (Good Catches)** 

Weekly improvement in either plant conditions or employee actions. Meant to continuously improve their plant

Example: Taking the manway cover off media tanks has the potential to "pop" off and hit technician.

Improvement: Add longer bolts to manway cover so that media can pour out without a danger to the technician





# Employees should be encouraged and rewarded for reporting injuries and near misses



(An accident that could have resulted in an injury, but didn't)

An example from landfill gas:

A technician was backing up a UTV on the side slope of a landfill when he hit a rock and rolled the UTV. The technician was not hurt but he reported the incident.

The employees at the site built a "tip table" to determine the roll over angle of the UTV. They experimented with different tires and axle extensions to find the safest configuration.

They then installed an audible inclinometer on the UTV to warn that the tip-angle was being approached.



Employee honesty, and lack of reprisal from management, led to employees finding a way to make their jobs safer after an accident was reported.



#### Suggested safety training for AD/RNG technicians



| General          | Lock Out/Tag Out               |  |  |
|------------------|--------------------------------|--|--|
|                  | Job Hazard Analysis            |  |  |
|                  | Energy Control Plan            |  |  |
| Mobile Machinery | Forklift                       |  |  |
|                  | Scissor Lift                   |  |  |
|                  | Manlift/Bucket Lift            |  |  |
|                  | Overhead Crane                 |  |  |
|                  | Standard Driver's License      |  |  |
|                  | CNG Trailer operations         |  |  |
| Electrical       | Use of Multimeter              |  |  |
|                  | Qualified Electrical Worker    |  |  |
|                  | P&ID and One Line Drawings     |  |  |
|                  | NFPA 70e Arc Flash             |  |  |
|                  | Arc Flash                      |  |  |
| Safety           | SCBA                           |  |  |
|                  | Respirator Fit                 |  |  |
|                  | H2S Sampling                   |  |  |
| Gas              | Gas Rescue                     |  |  |
| Ū.               | DOT Pipeline Operator Training |  |  |
| Medical          | First Aid/CPR/AED              |  |  |



#### Resources



Portable Pipelines for First Responders

<u>ANSI/CSA-B149.6-15 – Code for Digester Gas, Landfill Gas, and Biogas Generation and</u> <u>Utilization</u>

Risks and Safety Measures For Anaerobic Digestion: How Can You Make Your Plant Safer

Common Safety Practices for On-Farm Anaerobic Digester Sytems

Health and Safety Planning in Anaerobic Digestion





### Contact us at:

mark@novillarng.com

www.novillarng.com

## Questions?